algorithm - Maximum sum in a torus -


i trying solve following dynamic programming question on uva online judge:

a grid wraps both horizontally , vertically called torus. given torus each cell contains integer, determine sub-rectangle largest sum. sum of sub-rectangle sum of elements in rectangle. grid below shows torus maximum sub-rectangle has been shaded.

image of torus

we know there exists similar , simpler problem: maximal sub-rectangle problem grid canot wrap. simpler variant, can first take cumulative of each row , apply kadane's algorithm in 2 for-loops solve problem. problem, impossible since grid can wrap around.

i have headstart on problem mirroring matrix 4 times simulate rotation of matrix. however, dynamic programming related problems, have formulate recurrence relation. not know how formulate recurrence problem. please advise me?

edit:

i tried using modified kadane's algorithm search largest rectangle of @ least size 1. however, still not getting right answer. reference, code listed below:

#include <cstdio> #include <algorithm> #include <list> using namespace std;  int main() {     int cc,r,c,r,c,inf = 9999;     scanf("%d",&cc);     while(cc--) {         scanf("%d",&r);         c = r;         r = c = 2 * r;         int l[r][c], sum[r+1][c];         fill_n(sum[0],c,0);          for(int = 0; < r; i++) {             for(int j = 0; j < c; j++) {                 scanf("%d",&l[i][j]);                 sum[i+1][j] = l[i][j];                 sum[i+1][c+j] = l[i][j];                 sum[r+i+1][j] = l[i][j];                 sum[r+i+1][c+j] = l[i][j];             }         }         for(int = 0; < c; i++) {             for(int j = 1; j < r+1; j++) {                 sum[j][i] += sum[j-1][i];             }         }         int g_max = -inf;         for(int = 0; < r; i++) {             for(int j = i+1; j < i+r+1; j++) {                 int t_max = sum[j][0]-sum[i][0], s = sum[j][0]-sum[i][0], l = 1, lo = 0, hi = 0;                 g_max = max(g_max,t_max);                 for(int k = l; k < c; k++) {                     s += (sum[j][k]-sum[i][k])-(sum[j][k-l]-sum[i][k-l]);                     t_max = max(t_max+(sum[j][k]-sum[i][k]),s);                     if(t_max > g_max) {                         g_max = t_max;                         lo = k - l - 1;                         hi = k;                         if(hi - lo == c-1) break;                     }                 }             }         }         printf("%d\n",g_max);     }     return 0; } 

given test case:

1 5 1 -1 0 0 -4 2 3 -2 -3 2 4 1 -1 5 0 3 -2 1 -3 2 -3 2 4 1 -4 

the grid in test case shown above. answer should 15. getting 24. not sure wrong algorithm since implemented kadane's algo stackoverflow answer. able me?


Comments

Popular posts from this blog

php - How to add and update images or image url in Volusion using Volusion API -

Laravel mail error `Swift_TransportException in StreamBuffer.php line 269: Connection could not be established with host smtp.gmail.com [ #0]` -

c# SetCompatibleTextRenderingDefault must be called before the first -