java - DeepLearning4J IllegalArgumentException for CNN with custom Matrix -


i have custom 7(height) , 24(width) matrix input used training. output labels age ( young, mature, old). go deeplearning4j convolutional neural networks.

after building basic convolutional neural network first training item gives following error , have no clue about.

exception in thread "main" java.lang.illegalargumentexception: invalid size index 2 wher it's >= rank 2 @ org.nd4j.linalg.api.ndarray.basendarray.size(basendarray.java:4066) @ org.deeplearning4j.nn.layers.convolution.convolutionlayer.preoutput(convolutionlayer.java:192) @ org.deeplearning4j.nn.layers.convolution.convolutionlayer.activate(convolutionlayer.java:247) @ org.deeplearning4j.nn.graph.vertex.impl.layervertex.doforward(layervertex.java:88) @ org.deeplearning4j.nn.graph.computationgraph.feedforward(computationgraph.java:983) @ org.deeplearning4j.nn.graph.computationgraph.computegradientandscore(computationgraph.java:889) 

my dl4j code

//model config here multilayerconfiguration.builder builder = new neuralnetconfiguration.builder()     .seed(seed)     .iterations(iterations)     .regularization(true).l2(0.0005)     .learningrate(0.01)//.biaslearningrate(0.02)     //.learningratedecaypolicy(learningratepolicy.inverse).lrpolicydecayrate(0.001).lrpolicypower(0.75)     .weightinit(weightinit.xavier)     .optimizationalgo(optimizationalgorithm.stochastic_gradient_descent)     .updater(updater.nesterovs).momentum(0.9)      .list()     .layer(0, new convolutionlayer.builder(4, 1)         //nin , nout specify depth. nin here nchannels , nout number of filters applied             .name("hzvt1")         .nin(nchannels)         .stride(1, 1)         .nout(26)         .activation("relu")//.activation("identity")         .build())     .layer(1, new outputlayer.builder(lossfunctions.lossfunction.negativeloglikelihood)         .nout(outputnum)         .activation("softmax")         .build())       .setinputtype(inputtype.convolutional(nchannels,height,width))     .backprop(true).pretrain(false);  //model build here             model.fit(wmtrain);multilayerconfiguration conf = builder.build(); model.fit(wmtrain);multilayernetwork model = new multilayernetwork(conf); model.init();              //training data creation here  indarray weekmatrix = nd4j.ones(dlagegender.nchannels,dlagegender.height*dlagegender.width);        double[] vector = new double[] { 0.0, 1.0, 0.0 }; indarray intlabels = nd4j.create(vector); dataset ds=new dataset(weekmatrix,intlabels); //train first item model.fit(wmtrain); 

i using dl4j version 0.6 , java version 1.8, maven 3.3+

i suspect bug in library.

with of gitter support. found out model , input not matching. correct working code follows.

i hope dl4j error/exception messages more clear in next releases.

log.info("build model...."); system.out.println("building model..."); multilayerconfiguration.builder builder = new neuralnetconfiguration.builder()         .seed(seed)         .iterations(iterations)         .regularization(true).l2(0.0005)         .learningrate(0.01)//.biaslearningrate(0.02)         //.learningratedecaypolicy(learningratepolicy.inverse).lrpolicydecayrate(0.001).lrpolicypower(0.75)         .weightinit(weightinit.xavier)         .optimizationalgo(optimizationalgorithm.stochastic_gradient_descent)         .updater(updater.nesterovs).momentum(0.9)         .list()         .layer(0, new convolutionlayer.builder(4, 1)             //nin , nout specify depth. nin here nchannels , nout number of filters applied             .name("hzvt1")             .nin(nchannels)             .stride(1, 1)             .nout(26)             .activation("relu")//.activation("identity")             .build())         .layer(1, new outputlayer.builder(lossfunctions.lossfunction.negativeloglikelihood)             .nout(classes)             .activation("softmax")             .build())         .setinputtype(inputtype.convolutional(height,width,nchannels))         .backprop(true).pretrain(false);  //model build here             model.fit(wmtrain);multilayerconfiguration conf = builder.build(); model.fit(wmtrain);multilayernetwork model = new multilayernetwork(conf); model.init();              //training data creation here      indarray weekmatrix = nd4j.ones(new int[]{1,dlagegender.nchannels,dlagegender.height,dlagegender.width});     indarray intlabels;     double[] vector = new double[] { 0.0, 1.0, };     intlabels = nd4j.create(vector); dataset ds=new dataset(weekmatrix,intlabels);  log.info("train model...."); model.setlisteners(new scoreiterationlistener(1)); model.fit(wmtrain); system.out.println("data train ok."); 

Comments

Popular posts from this blog

php - How to add and update images or image url in Volusion using Volusion API -

Laravel mail error `Swift_TransportException in StreamBuffer.php line 269: Connection could not be established with host smtp.gmail.com [ #0]` -

c# SetCompatibleTextRenderingDefault must be called before the first -